Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ind Eng Chem Res ; 62(39): 15928-15939, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37810993

RESUMO

This work presents a systematic approach to formulating UV curable ionomer coatings that can be used as ion-exchange membranes when they are applied on porous substrates. Ion-exchange membranes fabricated in this way can be a cost-effective alternative to perfluorosulfonic acid membranes, such as Nafion and similar thin ionomer film membranes. Hierarchically structured coated membranes find applications for energy storage and conversion (organic redox flow batteries and artificial photosynthesis cells) and separation processes (electrodialysis). Designing the ionomer precursor for membrane formulation requires the introduction of compounds with drastically different properties into a liquid mixture. Hansen solubility theory was used to find the solvents to compatibilize main formulation components: acrylic sulfone salt (3-sulfopropyl methacrylate potassium salt) and hexafunctional polyester acrylate cross-linker (Ebecryl 830), otherwise nonmiscible or mutely soluble. Among the identified suitable solvents, acrylic acid and acetic acid allowed for optimal mixing of the components and reaching the highest levels of sulfonic group content, providing the desired ion-exchange capacity. Interestingly, they represented a case of a reactive and nonreactive solvent since acrylic acid was built into the ionomer during the UV curing step. Properties of the two membrane variants were compared. Samples fabricated with acetic acid exhibit improved handleability compared with the case of acrylic acid. Acetic acid yielded a lower area-specific resistance (6.4 ± 0.17 Ohm·cm2) compared to acrylic acid (12.1 ± 0.16 Ohm·cm2 in 0.5 M NaCl). This was achieved without severely suppressing the selectivity of the membrane, which was standing at 93.4 and 96.4% for preparation with acetic and acrylic acid, respectively.

2.
Membranes (Basel) ; 13(1)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36676914

RESUMO

Hierarchical cation-exchange membranes (hCEMs) fabricated by blade coating and UV crosslinking of ionomer on top of a porous substrate demonstrated promising results in performing NaCl demineralization. In the food industry, complex solutions are used and hCEMs were never investigated before for these food applications. The performances of two different coating chemistries (urethane acrylate based: UL, and acrylic acid based: EbS) and three crosslinking degrees (UL5, UL6, UL7 for UL formulations, and EbS-1, EbS-2, EbS-3 for EbS formulations) were formulated. The impacts of hCEMs properties and crosslinking density on whey demineralization performances by electrodialysis (ED) were evaluated and compared to CMX, a high performing CEM for whey demineralization by ED. The crosslinking density had an impact on the hCEMs area specific resistance, and on the ionic conductance for EbS membrane. However, 70% demineralization of 18% whey solution was reached for the first time for hCEMs without any fouling observed, and with comparable performances to the CMX benchmark. Although some properties were impacted by the crosslinking density, the global performances in ED (limiting current, demineralization duration, global system resistance, energy consumption, current efficiency) for EbS and UL6 membranes were similar to the CMX benchmark. These promising results suggest the possible application of these hCEMs (UL6, EbS-2, and EbS-3) for whey demineralization by ED and more generally complex products as an alternative in the food industry.

3.
Polymers (Basel) ; 13(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34371998

RESUMO

This paper presents a novel, cost-effective approach to the fabrication of composite anion exchange membranes (AEMs). Hierarchical AEMs have been fabricated by coating a porous substrate with an interpenetrating polymer network (IPN) layer where poly(vinylpyrrolidone) (PVP) is immobilized in a crosslinked matrix. The IPN matrix was formed by UV initiated radical crosslinking of a mixture of acrylamide-based monomers and acrylic resins. The fabricated membranes have been compared with a commercial material (Fumatech FAP 450) in terms of ionic transport properties and performance in a vanadium redox flow battery (VRFB). Measures of area-specific resistance (ASR) and vanadium permeability for the proposed membranes demonstrated properties approaching the commercial benchmark. These properties could be tuned by changing the content of PVP in the IPN coating. Higher PVP/matrix ratios facilitate a higher water uptake of the coating layer and thus lower ASR (as low as 0.58 Ω.cm2). On the contrary, lower PVP/matrix ratios allow to reduce the water uptake of the coating and hence decrease the vanadium permeability at the cost of a higher ASR (as high as 1.99 Ω.cm2). In VRFB testing the hierarchical membranes enabled to reach energy efficiency comparable with the commercial AEM (PVP_14-74.7%, FAP 450-72.7% at 80 mA.cm-2).

4.
Membranes (Basel) ; 11(6)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200638

RESUMO

Composite anion-exchange membranes (AEMs) consisting of a porous substrate and a vinyl imidazolium poly(phenylene oxide) (VIMPPO)/acrylamide copolymer layer were fabricated in a straightforward process, for use in redox flow batteries. The porous substrate was coated with a mixture of VIMPPO and acrylamide monomers, then subsequently exposed to UV irradiation, in order to obtain a radically cured ion-exchange coating. Combining VIMPPO with low-value reagents allowed to significantly reduce the amount of synthesized ionomer used to fabricate the mem- brane down to 15%. Varying the VIMPPO content also allowed tuning the ionic transport properties of the resulting AEM. A series of membranes with different VIMPPO/acrylamides ratios were prepared to assess the optimal composition by studying the changes of membranes properties-water uptake, area resistivity, permeability, and chemical stability. Characterization of the membranes was followed by cycling experiments in a vanadium RFB (VRFB) cell. Among three composite membranes, the one with VIMPPO 15% w/w-reached the highest energy efficiency (75.1%) matching the performance of commercial ion-exchange membranes (IEMs) used in VRFBs (Nafion® N 115: 75.0% and Fumasep® FAP 450: 73.0%). These results showed that the proposed composite AEM, fabricated in an industrially oriented process, could be considered to be a lower-cost alternative to the benchmarked IEMs.

5.
Molecules ; 26(13)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34279401

RESUMO

The membrane is a crucial component of Zn slurry-air flow battery since it provides ionic conductivity between the electrodes while avoiding the mixing of the two compartments. Herein, six commercial membranes (Cellophane™ 350PØØ, Zirfon®, Fumatech® PBI, Celgard® 3501, 3401 and 5550) were first characterized in terms of electrolyte uptake, ion conductivity and zincate ion crossover, and tested in Zn slurry-air flow battery. The peak power density of the battery employing the membranes was found to depend on the in-situ cell resistance. Among them, the cell using Celgard® 3501 membrane, with in-situ area resistance of 2 Ω cm2 at room temperature displayed the highest peak power density (90 mW cm-2). However, due to the porous nature of most of these membranes, a significant crossover of zincate ions was observed. To address this issue, an ion-selective ionomer containing modified poly(phenylene oxide) (PPO) and N-spirocyclic quaternary ammonium monomer was coated on a Celgard® 3501 membrane and crosslinked via UV irradiation (PPO-3.45 + 3501). Moreover, commercial FAA-3 solutions (FAA, Fumatech) were coated for comparison purpose. The successful impregnation of the membrane with the anion-exchange polymers was confirmed by SEM, FTIR and Hg porosimetry. The PPO-3.45 + 3501 membrane exhibited 18 times lower zincate ions crossover compared to that of the pristine membrane (5.2 × 10-13 vs. 9.2 × 10-12 m2 s-1). With low zincate ions crossover and a peak power density of 66 mW cm-2, the prepared membrane is a suitable candidate for rechargeable Zn slurry-air flow batteries.

6.
J Phys Chem B ; 119(4): 1425-32, 2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25536860

RESUMO

The folding of a pH-sensitive leucine zipper, that is, a GCN4 mutant containing eight glutamic acid residues, has been investigated. A pH-jump induced by a caged proton (o-nitrobenzaldehyde, oNBA) is employed to initiate the process, and time-resolved IR spectroscopy of the amide I band is used to probe it. The experiment has been carefully designed to minimize the buffer capacity of the sample solution so that a large pH jump can be achieved, leading to a transition from a completely unfolded to a completely folded state with a single laser shot. In order to eliminate the otherwise rate-limiting diffusion-controlled step of the association of two peptides, they have been covalently linked. The results for the folding kinetics of the cross-linked peptide are compared with those of an unlinked peptide, which reveals a detailed picture of the folding mechanism. That is, folding occurs in two steps, one on an ∼1-2 µs time scale leading to a partially folded α-helix even in the monomeric case and a second one leading to the final coiled-coil structure on distinctively different time scales of ∼30 µs for the cross-linked peptide and ∼200 µs for the unlinked peptide. By varying the initial pH, it is found that the folding mechanism is consistent with a thermodynamic two-state model, despite the fact that a transient intermediate is observed in the kinetic experiment.


Assuntos
Zíper de Leucina , Modelos Moleculares , Dobramento de Proteína , Sequência de Aminoácidos , Reagentes de Ligações Cruzadas/química , Difusão , Concentração de Íons de Hidrogênio , Peptídeos/química
7.
Proc Natl Acad Sci U S A ; 110(29): 11725-30, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23818626

RESUMO

By covalently linking an azobenzene photoswitch across the binding groove of a PDZ domain, a conformational transition, similar to the one occurring upon ligand binding to the unmodified domain, can be initiated on a picosecond timescale by a laser pulse. The protein structures have been characterized in the two photoswitch states through NMR spectroscopy and the transition between them through ultrafast IR spectroscopy and molecular dynamics simulations. The binding groove opens on a 100-ns timescale in a highly nonexponential manner, and the molecular dynamics simulations suggest that the process is governed by the rearrangement of the water network on the protein surface. We propose this rearrangement of the water network to be another possible mechanism of allostery.


Assuntos
Compostos Azo/química , Lasers , Modelos Moleculares , Fotoquímica/métodos , Conformação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 13/química , Regulação Alostérica/fisiologia , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Espectrofotometria Infravermelho , Fatores de Tempo , Água/química
8.
Chimia (Aarau) ; 66(4): 182-6, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22613145

RESUMO

Proton transfer reactions, including acid-base recombination, are commonly considered to occur 'nearly instantaneously'. However, their actual time scales may stretch far into the microsecond range, as acid-base reactions are diffusion controlled and the concentrations are low near neutral pH. The interplay of competing bases in the pH relaxation is illustrated using a model acid-base system consisting of o-nitrobenzaldehyde (oNBA) as a proton cage and acetate ions and hydroxyl ions as bases. The kinetically controlled behavior leads to highly counterintuitive states, i.e. acetate ions are transiently protonated for hundreds of nanoseconds despite the presence of a much stronger base OH-.

9.
J Phys Chem B ; 115(5): 1075-83, 2011 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-21222460

RESUMO

With a combination of transient pump-probe IR spectroscopy and ab initio molecular dynamics, the controversial pico- and nanosecond steps of the o-nitrobenzaldehyde (oNBA) photoreaction have been investigated in aqueous solution. In this way, the measured reaction kinetics have been complemented with an atomistic picture of the reactive events as obtained with unbiased simulations in explicit solvent. Our results allow for a detailed description of the oNBA proton photorelease, a process of fundamental importance and relevant to the use of oNBA as a proton cage in many experiments. In a first step, a stable ketene intermediate is formed on a subpicosecond time scale. This intermediate reacts in a solvent assisted way with an OH transfer to produce nitrosobenzoic acid with a characteristic time of 7 ps. Finally, in permitting pH conditions, this product molecule dissociates a carboxyl proton with a 21 ns time constant. The particular combination of theory and experiment employed in this work appears to be sufficiently general and powerful to find widespread application in the study of ultrafast reactive systems.

10.
Phys Chem Chem Phys ; 11(18): 3390-400, 2009 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-19421540

RESUMO

Voltammetric reductive desorption, scanning tunneling microscopy (STM) and surface-enhanced Raman scattering (SERS) were used to determine the composition and structure of mixed, two-component monolayers of sodium 2-mercaptoetanosulfonate (MES) and mercaptoundecanol (MUL) on silver and gold supports. Monolayers were prepared by self assembling from ethanolic solutions of varying composition. Preferred adsorption of MUL was found in the electrochemical experiments on Au(111). The presence of two well-separated reductive desorption peaks in the voltammograms of the mixed monolayers on Au(111) indicated the existence of MES-rich and MUL-rich phases in a wide range of solution compositions. STM imaging confirmed formation of a few-nanometer-wide thiol domains for xMES greater than 0.5 in the solution used for SAMs preparation. On the contrary, SERS experiments pointed at dominant adsorption of MES on rough Ag and Au substrates. Nearly exclusive adsorption of the MES for xMES greater than 0.5 was observed on the rough Ag surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...